Основы линейной алгебры

Автор
avatar-alexey_bondarevalexey_bondarev

Курс Линейная алгебра предназначен для ознакомления с базовыми понятиями линейной алгебры, такими как матрицы, определители, системы линейных алгебраических уравнений, собственные значения и собственные векторы.

Каждый раздел курса содержит краткие теоретические сведения, практические примеры и задания для самостоятельного выполнения.

Требования к уровню знаний: прохождение курса «Добро пожаловать в Engee».

Общее время прохождения курса: ~3 часа.

Программа курса

  • Матрицы. Основные виды матриц

Изучаются понятие матрицы, основные виды матриц (квадратная, диагональная, единичная, треугольная, нулевая матрица, вектор-строка и вектор-столбец), понятие транспонированной и эрмитово-сопряженной матрицы.

  • Основные операции над матрицами

Изучаются умножение матрицы на число, сложение, вычитание и умножение матриц, возведение матрицы в степень.

  • Определители

Изучаются понятия определителя второго, третьего и высших порядков, свойства определителей, понятия миноров и алгебраических дополнений.

  • Обратная матрицы

Изучаются понятия вырожденной и невырожденной, присоединенной и обратной матрицы, свойства обратной матрицы.

  • Ранг матрицы

Изучаются понятие ранга матрицы, его свойства и вычисление ранга матрицы с помощью элементарных преобразований.

  • Системы линейных алгебраических уравнений

Изучаются системы линейных алгебраических уравнений, решение систем линейных уравнений встроенными средствами Engee, по формулам Крамера, матричным методом и методом Гаусса, исследование совместности систем линейных уравнений с помощью теоремы Кронекера–Капелли.

  • Собственные значения и собственные векторы матрицы

Изучаются понятия собственного числа и собственного вектора, их вычисление встроенными средствами Engee, применение собственных значений и собственных векторов для вычисления рейтинга веб-страниц.