Heat Exchanger (G)
Теплообменник для систем с потоком газа и регулируемым потоком.
Тип: EngeeFluids.HeatExchangers.EffectivenessNTU.Gas
Путь в библиотеке:
|
Описание
Блок Heat Exchanger (G) моделирует теплообмен между газом, который течет между портами A1 и B1, и внешним, регулируемым теплоносителем по скалярному сигналу.
Модель теплопередачи
Модель теплопередачи блока основана на методе «эффективность-число единиц переноса теплоты» (E-NTU). В установившемся режиме теплообмен осуществляется с эффективностью, равной лишь доли идеального значения, которое достижимо при отсутствии теплового сопротивления и постоянстве температур на входе потоков:
где
-
— фактический тепловой поток;
-
— идеальный тепловой поток;
-
— доля идеального теплового потока, фактически наблюдаемая в реальном теплообменнике, в котором есть потери. Эта величина определяет эффективность теплообменника и является функцией числа единиц переноса, или .
Безразмерный параметр отражает относительную эффективность межпоточного теплообмена по сравнению со способностью потоков аккумулировать передаваемое тепло:
где
-
— коэффициент теплопроводности между потоками;
-
— минимальное значение потоковой теплоемкости, относящееся к потоку, с наименьшей способностью поглощать тепло.
Потоковая теплоемкость зависит от удельной теплоемкости теплоносителя ( ) и от его массового расхода через теплообменник ( ):
Эффективность также зависит от взаимного расположения потоков, количества ходов между ними и условий смешивания потоков. Для каждой схемы движения теплоносителей используется собственное выражения эффективности. Перечень таких выражений приведен в блоке E-NTU Heat Transfer.
Схема движения теплоносителей
Параметр Flow arrangement определяет взаимное направление потоков: прямоточное, противоточное, поперек друг другу (поперечное), а также конструкцию «труба в кожухе», в которой один поток проходит внутри труб, а другой — снаружи, в кожухе. Рисунок ниже иллюстрирует такую схему потоков. Поток в трубах может совершать как один ход через кожух (рис. справа), так и несколько ходов (рис. слева) для большей эффективности теплообмена.
Альтернативные схемы движения теплоносителей могут быть заданы по общей параметризации табличными данными об эффективности, что не требует детальной спецификации теплообменника. Такие данные должны отражать схему движения теплоносителей, степень их смешивания и количество ходов через кожух или трубу.
Условия смешивания
Параметр Cross flow type позволяет задать характер смешивания: перемешан один из потоков, оба или ни один. Смешивание подразумевает поперечное движение теплоносителя в каналах, лишенных внутренних барьеров (направляющих, перегородок, ребер или стенок). Оно способствует выравниванию температурных градиентов в поперечном сечении. В несмешанных потоках, как показано на рисунке ниже справа, температура изменяется лишь вдоль направления потока, в смешанных (рис. слева) — как в продольном, так и в поперечном направлении.
Различие между смешанными и несмешанными потоками учитываются только в схемах движения теплоносителей с поперечными потоками, где продольное изменение температуры одного теплоносителя индуцирует поперечные градиенты температуры в другом. В схемах прямоточным/противоточным движением теплоносителей происходит только продольное изменения температур теплоносителей и смешивание практически не влияет на теплопередачу, потому не учитывается.
Кривые эффективности
Наиболее эффективными являются кожухотрубные многоходовые теплообменники (iv.b-e на рисунке для 2, 3 и 4 проходов). Среди теплообменников с одним ходом наиболее эффективны противоточные теплообменники (ii), а наименее эффективны прямоточные теплообменники (i).
Теплообменники с поперечным потоком занимают промежуточное положение по эффективности и их эффективность зависит от степени смешивания. Наивысшая достигается при отсутствии смешивания в обоих потоках (iii.a), наименьшая — при смешивании обоих (iii.b). Смешивание только потока с наименьшей потоковой теплоемкостью (iii.c) снижает эффективность в большей степени, чем смешивание потока с наибольшим значением потоковой теплоемкости (iii.d).
Термическое сопротивление
Общее термическое сопротивление представляет собой сумму местных сопротивлений по направлению теплопередачи. Они включают: конвекцию на поверхности стенки и теплопроводность через стенку и загрязненные слои при наличии отложений. Формула ниже используется для расчета общего сопротивления в направлении от газа (подстрочный индекс 1) к регулируемому теплоносителю (подстрочный индекс 2):
где
-
и — коэффициенты конвективного теплообмена для газа и регулируемого теплоносителя;
-
и — коэффициент отложений на стенке со стороны газа и регулируемого теплоносителя;
-
и — площади поверхностей теплопередачи со стороны газа и регулируемого теплоносителя;
-
— термическое сопротивление стенки.
Термическое сопротивление стенки и коэффициенты отложений — это константы, задаваемые в параметрах блока. В то же время, коэффициенты теплопередачи представляют собой сложные функции, зависящие от свойств теплоносителя, геометрии потока и трения о стенки. Они рассчитываются на основе эмпирических корреляций между числами Рейнольдса, Нуссельта и Прандтля. Выбор конкретной корреляции зависит от схемы движения теплоносителей и условий смешивания, и подробно описан в блоке E-NTU Heat Transfer, на котором основана модель блока.
Структура блока
Блок представляет собой составной компонент, построенный из более простых блоков. Блок Heat Exchanger Interface (G) моделирует поток газа. Скалярные сигналы для потоковой теплоемкости и коэффициента теплопередачи, а также тепловой порт для температуры, определяют регулируемый поток. Теплообмен через стенку между потоками моделируется с использованием блока E-NTU Heat Transfer.

Порты
Ненаправленные
#
A1
—
вход или выход газа
газ
Details
Порт входа или выхода для газа на соответствующей ему стороне теплообменника.
| Имя для программного использования |
|
#
B1
—
вход или выход газа
газ
Details
Порт входа или выхода для газа на соответствующей ему стороне теплообменника.
| Имя для программного использования |
|
#
H2
—
температура регулируемого теплоносителя на входе
тепло
Details
Ненаправленный порт, связанный с температурой регулируемого теплоносителя на входе.
| Имя для программного использования |
|
Вход
#
C2
—
потоковая теплоемкость регулируемого теплоносителя
скаляр
Details
Входной порт, на который поступает значение потоковой теплоемкости регулируемого теплоносителя.
| Типы данных |
|
| Поддержка комплексных чисел |
Нет |
#
HC2
—
коэффициент теплопередачи регулируемого теплоносителя
скаляр
Details
Коэффициент теплопередачи между регулируемым теплоносителем и разделяющей стенкой.
| Типы данных |
|
| Поддержка комплексных чисел |
Нет |
Параметры
Общие
#
Flow arrangement —
схема движения теплоносителей в теплообменнике
Parallel or counter flow | Shell and tube | Cross flow | Generic - effectiveness table
Details
Параметр, задающий взаимное расположение потоков в теплообменнике: прямоточное, противоточное, поперек друг другу (поперечное), а также конструкция «труба в кожухе», в которой один поток проходит внутри труб, а другой — снаружи, в кожухе.
Альтернативные схемы движения теплоносителей могут быть заданы в произвольной таблице эффективности, что не требует детальной спецификации теплообменника.
| Значения |
|
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Нет |
#
Wall thermal resistance —
сопротивление стенки тепловому потоку за счет теплопроводности
K/W
Details
Сопротивление стенки тепловому потоку за счет теплопроводности и обратная величина теплопроводности, или произведение теплопроводности на отношение площади поверхности к длине. Сопротивление стенки складывается с конвективным сопротивлением и сопротивлением отложений, чтобы определить общий коэффициент теплопередачи между потоками.
| Единицы измерения |
|
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Да |
Газ
#
Minimum free-flow area —
площадь поперечного сечения канала в самом узком месте
m^2 | um^2 | mm^2 | cm^2 | km^2 | in^2 | ft^2 | yd^2 | mi^2 | ha | ac
Details
Минимальная площадь поперечного сечения канала, по которому течет теплоноситель, между входом и выходом. Если он представляет собой набор каналов, трубок, щелей или канавок, то значение параметра определяется как сумма наименьших площадей в точке минимальной площади потока.
| Единицы измерения |
|
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Да |
#
Hydraulic diameter for pressure loss —
гидравлический диаметр канала в самом узком месте
m | um | mm | cm | km | in | ft | yd | mi | nmi
Details
Эффективный внутренний диаметр канала в сечении с наименьшей площадью. Для некруглых каналов гидравлический диаметр — это эквивалентный диаметр круга с площадью равной площади существующего канала. Его значение равно отношению минимальной площади поперечного сечения канала к четверти его полного периметра.
Если канал задан набором каналов, труб, щелей или желобков, то общий периметр равен сумме периметров всех элементов. Если канал является круглой трубой, то его гидравлический диаметр равен фактическому.
| Единицы измерения |
|
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Да |
#
Gas volume —
общий объем теплоносителя в канале газа
m^3 | um^3 | mm^3 | cm^3 | km^3 | ml | l | gal | igal | in^3 | ft^3 | yd^3 | mi^3
Details
Общий объем теплоносителя, содержащейся в канале газа.
| Единицы измерения |
|
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Да |
# Laminar flow upper Reynolds number limit — нижняя граница переходной зоны между ламинарным и турбулентным режимами течения
Details
Значение числа Рейнольдса, соответствующее нижней границе переходной зоны между ламинарным и турбулентным режимами течения. Выше этого значения начинают доминировать инерционные силы, в результате чего течение переходит из ламинарного в турбулентный режим. Значение по умолчанию соответствует круглой трубе с гладкой внутренней поверхностью.
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Да |
# Turbulent flow lower Reynolds number limit — верхняя граница переходной зоны между ламинарным и турбулентным режимами течения
Details
Значение числа Рейнольдса, соответствующее верхней границе переходной зоны между ламинарным и турбулентным режимами течения. Ниже этого значения начинают доминировать вязкие силы, в результате чего течение переходит из турбулентного в ламинарный режим. Значение по умолчанию соответствует круглой трубе с гладкой внутренней поверхностью.
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Да |
#
Pressure loss model —
математическая модель для расчета потерь давления из-за вязкого трения
Pressure loss coefficient | Correlation for flow inside tubes | Tabulated data - Darcy friction factor vs. Reynolds number | Tabulated data - Euler number vs. Reynolds number
Details
Параметр позволяет выбрать одну из моделей расчета потерь давления из-за вязкого трения. Параметр определяет, какие выражения будут использованы в расчете потерь, а также какие параметры блока необходимо задать на входе. Детали расчетов в зависимости от выбранной параметризации приведены в блоке Heat Exchanger Interface (G).
| Значения |
|
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Нет |
# Pressure loss coefficient — суммарный коэффициент, учитывающий гидравлические потери между портами
Details
Суммарный коэффициент потерь учитывающий все гидравлические сопротивления потока в канале, включая потери на трение о стенки (основные потери) и локальные сопротивления из-за изгибов, колен и других изменений геометрии (незначительные потери).
Коэффициент потерь представляет собой эмпирическую безразмерную величину, широко используемую для описания потерь давления, обусловленных вязким трением. Он может быть рассчитан на основе экспериментальных данных или, в ряде случаев, получен из технической документации.
Зависимости
Чтобы использовать этот параметр, установите для параметра Pressure loss model значение Pressure loss coefficient.
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Да |
#
Heat transfer coefficient model —
математическая модель для теплообмена между теплоносителем и стенкой
Constant heat transfer coefficient | Correlation for flow inside tubes | Tabulated data - Colburn factor vs. Reynolds number | Tabulated data - Nusselt number vs. Reynolds number and Prandtl number
Details
Математическая модель для теплопередачи между теплоносителем и стенкой. Выбор модели определяет, какие выражения применять и какие параметры указывать для расчетов теплопередачи.
Подробнее см. в блоке E-NTU Heat Transfer.
| Значения |
|
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Нет |
#
Heat transfer surface area —
эффективная площадь поверхности, используемая в теплопередаче между теплоносителем и стенкой
m^2 | um^2 | mm^2 | cm^2 | km^2 | in^2 | ft^2 | yd^2 | mi^2 | ha | ac
Details
Эффективная площадь поверхности, используемая в теплопередаче между теплоносителем и стенкой. Эффективная площадь поверхности — это сумма площадей первичной и вторичной поверхности, площади, на которой стенка подвергается воздействию жидкости, и площади ребер, если таковые используются. Площадь поверхности ребер обычно рассчитывается по коэффициенту эффективности ребер.
| Единицы измерения |
|
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Да |
#
Gas-wall heat transfer coefficient —
коэффициент теплопередачи при конвекции между газом и стенкой
W/(m^2*K) | Btu_IT/(hr*ft^2*deltadegR)
Details
Коэффициент теплопередачи для конвекции между газом и стенкой. Сопротивление, вызванное отложениями, учитывается отдельно в параметре Fouling factor.
Зависимости
Чтобы использовать этот параметр, установите для параметра Heat transfer coefficient model значение Constant heat transfer coefficient.
| Единицы измерения |
|
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Да |
#
Fouling factor —
термическое сопротивление из-за отложений
K*m^2/W | deltadegR*ft^2*hr/Btu_IT
Details
Термическое сопротивление из-за отложений, которые со временем образуются на открытых поверхностях стенки. Отложения, поскольку они создают между теплоносителем и стенкой новый твердый слой, через который должно проходить тепло, добавляют к пути теплопередачи дополнительное термическое сопротивление. Отложения растут медленно, и сопротивление, вызванное ими, соответственно, принимается постоянным во время симуляции.
| Единицы измерения |
|
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Да |
#
Threshold mass flow rate for flow reversal —
пороговый массовый расход газа
kg/s | kg/hr | kg/min | g/hr | g/min | g/s | t/hr | lbm/hr | lbm/min | lbm/s
Details
Массовый расход, ниже которого применяется численное сглаживание. Это делается для того, чтобы избежать разрывов при застое потока.
| Единицы измерения |
|
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Да |
#
Minimum fluid-wall heat transfer coefficient —
нижняя граница для коэффициента теплопередачи газа
W/(m^2*K) | Btu_IT/(hr*ft^2*deltadegR)
Details
Нижняя граница для коэффициента теплопередачи между газом и стенкой. Если расчет дает меньший коэффициент теплопередачи, то значение Minimum fluid-wall heat transfer coefficient заменяет вычисленное значение.
| Единицы измерения |
|
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Да |
Регулируемая жидкость
#
Heat transfer surface area —
эффективная площадь поверхности, используемая в теплопередаче между теплоносителем и стенкой
m^2 | um^2 | mm^2 | cm^2 | km^2 | in^2 | ft^2 | yd^2 | mi^2 | ha | ac
Details
Эффективная площадь поверхности, используемая в теплопередаче между теплоносителем и стенкой. Эффективная площадь поверхности — это сумма площадей первичной и вторичной поверхности, площади, на которой стенка подвергается воздействию жидкости, и площади ребер, если таковые используются. Площадь поверхности ребер обычно рассчитывается по коэффициенту эффективности ребер.
| Единицы измерения |
|
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Да |
#
Fouling factor —
термическое сопротивление из-за отложений
K*m^2/W | deltadegR*ft^2*hr/Btu_IT
Details
Термическое сопротивление из-за отложений, которые со временем образуются на открытых поверхностях стенки. Отложения, поскольку они создают между теплоносителем и стенкой новый твердый слой, через который должно проходить тепло, добавляют к пути теплопередачи дополнительное термическое сопротивление. Отложения растут медленно, и сопротивление, вызванное ими, соответственно, принимается постоянным во время симуляции.
| Единицы измерения |
|
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Да |
#
Minimum fluid-wall heat transfer coefficient —
нижняя граница для коэффициента теплопередачи регулируемого теплоносителя
W/(m^2*K) | Btu_IT/(hr*ft^2*deltadegR)
Details
Нижняя граница для коэффициента теплопередачи между теплоносителем и стенкой. Если расчет дает меньший коэффициент теплопередачи, то значение Minimum fluid-wall heat transfer coefficient заменяет вычисленное значение.
| Единицы измерения |
|
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Да |
Эффекты и начальные условия
#
Gas initial temperature —
температура газа в канале в начале симуляции
K | degC | degF | degR | deltaK | deltadegC | deltadegF | deltadegR
Details
Температура газа в канале в начале симуляции.
| Единицы измерения |
|
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Да |
#
Gas initial pressure —
давление газа в канале в начале симуляции
Pa | uPa | hPa | kPa | MPa | GPa | kgf/m^2 | kgf/cm^2 | kgf/mm^2 | mbar | bar | kbar | atm | ksi | psi | mmHg | inHg
Details
Давление газа в канале в начале симуляции.
| Единицы измерения |
|
| Значение по умолчанию |
|
| Имя для программного использования |
|
| Вычисляемый |
Да |