Engee documentation

Validation

A number of functions are made available to assist in validation of the estimated models. We illustrate by an example

Generate some test data:

using ControlSystemIdentification, ControlSystemsBase, Random
using ControlSystemIdentification: newpem
Random.seed!(1)
T          = 200
nx         = 2
nu         = 1
ny         = 1
x0         = randn(nx)
σy         = 0.5
sim(sys,u) = lsim(sys, u, 1:T)[1]
sys        = tf(1, [1, 2*0.1, 0.1])
sysn       = tf(σy, [1, 2*0.1, 0.3])
# Training data
u          = randn(nu,T)
y          = sim(sys, u)
yn         = y + sim(sysn, randn(size(u)))
dn         = iddata(yn, u, 1)
# Validation data
uv         = randn(nu, T)
yv         = sim(sys, uv)
ynv        = yv + sim(sysn, randn(size(uv)))
dv         = iddata(yv, uv, 1)
dnv        = iddata(ynv, uv, 1)
InputOutput data of length 200, 1 outputs, 1 inputs, Ts = 1

We then fit a couple of models

res = [newpem(dn, nx, focus=:prediction) for nx = [2,3,4]];
Iter     Function value   Gradient norm
     0     8.214820e+01     4.786930e+02
 * time: 8.392333984375e-5
    50     1.367893e+01     1.347632e+02
 * time: 0.025363922119140625
Iter     Function value   Gradient norm
     0     6.941423e+01     6.057682e+02
 * time: 5.3882598876953125e-5
    50     1.905270e+01     8.542130e+02
 * time: 0.13147401809692383
Iter     Function value   Gradient norm
     0     5.781936e+01     6.010229e+02
 * time: 4.482269287109375e-5
    50     7.805465e+00     4.607881e+01
 * time: 0.06421685218811035

After fitting the models, we validate the results using the validation data and the functions simplot and predplot (cf. Matlab sys.id’s compare):

using Plots
ω   = exp10.(range(-2, stop=log10(pi), length=150))
fig = plot(layout=4, size=(1000,600))
for i in eachindex(res)
    sysh, x0h, opt = res[i]
    simplot!( sysh, dnv, x0h; sp=1, ploty=false)
    predplot!(sysh, dnv, x0h; sp=2, ploty=false)
end
plot!(dnv.y' .* [1 1], lab="y", l=(:dash, :black), sp=[1 2])
bodeplot!((getindex.(res,1)),                     ω, link = :none, balance=false, plotphase=false, subplot=3, title="Process", linewidth=2*[4 3 2 1])
bodeplot!(innovation_form.(getindex.(res,1)),     ω, link = :none, balance=false, plotphase=false, subplot=4, linewidth=2*[4 3 2 1])
bodeplot!(sys,                                    ω, link = :none, balance=false, plotphase=false, subplot=3, lab="True", l=(:black, :dash), legend = :bottomleft, title="System model")
bodeplot!(innovation_form(ss(sys),syse=ss(sysn)), ω, link = :none, balance=false, plotphase=false, subplot=4, lab="True", l=(:black, :dash), ylims=(0.1, 100), legend = :bottomleft, title="Noise model")
0mkHAAAAAElFTkSuQmCC

In the figure, simulation output is compared to the true model on the top left and prediction on top right. The system models and noise models are visualized in the bottom plots. All models capture the system dynamics reasonably well, but struggle slightly with capturing the gain of the noise dynamics. The true system has 4 poles (two in the process and two in the noise process) but a simpler model may sometimes work better.

Prediction models may also be evaluated using a h-step prediction, here h is short for "horizon".

figh = plot()
for i in eachindex(res)
    sysh, x0h, opt = res[i]
    predplot!(sysh, dnv, x0h, ploty=false, h=5)
end
plot!(dnv.y', lab="y", l=(:dash, :black))
figh
9D57zv1MjQDnwAAAAAElFTkSuQmCC

It’s generally a good idea to validate estimated model with a prediction horizon larger than one, in particular, it may be valuable to verify the performance for a prediction horizon that corresponds roughly to the dominant time constant of the process.

Different length predictors

When the prediction horizon gets longer, the mapping from approaches that of the simulation system, while the mapping gets smaller and smaller.

using LinearAlgebra
G   = c2d(DemoSystems.resonant(), 0.1)
K   = kalman(G, I(G.nx), I(G.ny))
sys = add_input(G, K, I(G.ny)) # Form an innovation model with inputs u and e

T = 10000
u = randn(G.nu, T)
e = 0.1randn(G.ny, T)
y = lsim(sys, [u; e]).y
d = iddata(y, u, G.Ts)
Gh,_ = newpem(d, G.nx, zeroD=true)

# Create predictors with different horizons
p1   = observer_predictor(Gh)
p2   = observer_predictor(Gh, h=2)
p10  = observer_predictor(Gh, h=10)
p100 = observer_predictor(Gh, h=100)

bodeplot([p1, p2, p10, p100], plotphase=false, lab=["1" "" "2" "" "10" "" "100" ""])
bodeplot!(sys, ticks=:default, plotphase=false, l=(:black, :dash), lab=["sim" ""], title=["From u" "From y"])
i8VCCOE4rtfrL1y4YDKZLK9aDgQtDZTB54My2Hj+B3Hqj90NgEp9AAAAAElFTkSuQmCC

The prediction error as a function of prediction horizon approaches the simulation error.

using Statistics
hs = [1:40; 45:5:80]
perrs = map(hs) do h
    yh = predict(Gh, d; h)
    ControlSystemIdentification.rms(d.y - yh) |> mean
end
serr = ControlSystemIdentification.rms(d.y - simulate(Gh, d)) |> mean

plot(hs, perrs, lab="Prediction errors", xlabel="Horizon", ylabel="RMS error")
hline!([serr], lab="Simulation error", l=:dash, legend=:bottomright, ylims=(0, Inf))
r2MdYoAABIGv51AwAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQtP8PeXsYCulWMaUAAAAASUVORK5CYII=

Validation API

predict(ARX::TransferFunction, d::InputOutputData)

One step ahead prediction for an ARX process. The length of the returned prediction is length(d) - max(na, nb)

Example:

julia> predict(tf(1, [1, -1], 1), iddata(1:10, 1:10))
9-element Vector{Int64}:
  2
  4
  6
  8
 10
 12
 14
 16
 18
predict(sys, d::AbstractIdData, args...)
predict(sys, y, u, x0 = nothing)

See also predplot

yh = predict(ar::TransferFunction, y)

Predict AR model

simulate(sys, u, x0 = nothing)
simulate(sys, d, x0 = nothing)

See also simplot, predict

sse(x)

Sum of squares of x.

mse(x)

Mean square of x.

rms(x)

Root mean square of x.

fpe(e, d::Int)

Akaike’s Final Prediction Error (FPE) criterion for model order selection.

e is the prediction errors and d is the number of parameters estimated.

aic(e::AbstractVector, d)

Akaike’s Information Criterion (AIC) for model order selection.

e is the prediction errors and d is the number of parameters estimated.

See also fpe.

Video tutorials

Relevant video tutorials are available here: