References
Public Interface
Plot specification
#
RecipesBase.plot
— Function
The main plot command. Use plot
to create a new plot object, and plot!
to add to an existing one:
plot(args...; kw...) # creates a new plot window, and sets it to be the current plot!(args...; kw...) # adds to the `current` plot!(plotobj, args...; kw...) # adds to the plot `plotobj`
There are lots of ways to pass in data, and lots of keyword arguments… just try it and it will likely work as expected. When you pass in matrices, it splits by columns. To see the list of available attributes, use the plotattr(attr)
function, where attr
is the symbol :Series
, :Subplot
, :Plot
, or :Axis
. Pass any attribute to plotattr
as a String to look up its docstring, e.g., plotattr("seriestype")
.
Extended help
Series attributes
-
arrow
-
bar_edges
-
bar_position
-
bar_width
-
bins
-
colorbar_entry
-
connections
-
contour_labels
-
contours
-
extra_kwargs
-
fill
-
fill_z
-
fillalpha
-
fillcolor
-
fillrange
-
fillstyle
-
group
-
hover
-
label
-
levels
-
line
-
line_z
-
linealpha
-
linecolor
-
linestyle
-
linewidth
-
marker
-
marker_z
-
markeralpha
-
markercolor
-
markershape
-
markersize
-
markerstrokealpha
-
markerstrokecolor
-
markerstrokestyle
-
markerstrokewidth
-
normalize
-
orientation
-
permute
-
primary
-
quiver
-
ribbon
-
series_annotations
-
seriesalpha
-
seriescolor
-
seriestype
-
show_empty_bins
-
smooth
-
stride
-
subplot
-
weights
-
x
-
xerror
-
y
-
yerror
-
z
-
z_order
-
zerror
Axis attributes
Prepend these with the axis letter (x, y or z)
-
axis
-
discrete_values
-
draw_arrow
-
flip
-
foreground_color_axis
-
foreground_color_border
-
foreground_color_grid
-
foreground_color_guide
-
foreground_color_minor_grid
-
foreground_color_text
-
formatter
-
grid
-
gridalpha
-
gridlinewidth
-
gridstyle
-
guide
-
guide_position
-
guidefont
-
guidefontcolor
-
guidefontfamily
-
guidefonthalign
-
guidefontrotation
-
guidefontsize
-
guidefontvalign
-
lims
-
link
-
minorgrid
-
minorgridalpha
-
minorgridlinewidth
-
minorgridstyle
-
minorticks
-
mirror
-
rotation
-
scale
-
showaxis
-
tick_direction
-
tickfont
-
tickfontcolor
-
tickfontfamily
-
tickfonthalign
-
tickfontrotation
-
tickfontsize
-
tickfontvalign
-
ticks
-
unitformat
-
widen
Subplot attributes
-
annotationcolor
-
annotationfontfamily
-
annotationfontsize
-
annotationhalign
-
annotationrotation
-
annotations
-
annotationvalign
-
aspect_ratio
-
background_color_inside
-
background_color_subplot
-
bottom_margin
-
camera
-
clims
-
color_palette
-
colorbar
-
colorbar_continuous_values
-
colorbar_discrete_values
-
colorbar_fontfamily
-
colorbar_formatter
-
colorbar_scale
-
colorbar_tickfontcolor
-
colorbar_tickfontfamily
-
colorbar_tickfonthalign
-
colorbar_tickfontrotation
-
colorbar_tickfontsize
-
colorbar_tickfontvalign
-
colorbar_ticks
-
colorbar_title
-
colorbar_title_location
-
colorbar_titlefont
-
colorbar_titlefontcolor
-
colorbar_titlefontfamily
-
colorbar_titlefonthalign
-
colorbar_titlefontrotation
-
colorbar_titlefontsize
-
colorbar_titlefontvalign
-
extra_kwargs
-
fontfamily_subplot
-
foreground_color_subplot
-
foreground_color_title
-
framestyle
-
left_margin
-
legend_background_color
-
legend_column
-
legend_font
-
legend_font_color
-
legend_font_family
-
legend_font_halign
-
legend_font_pointsize
-
legend_font_rotation
-
legend_font_valign
-
legend_foreground_color
-
legend_position
-
legend_title
-
legend_title_font
-
legend_title_font_color
-
legend_title_font_family
-
legend_title_font_halign
-
legend_title_font_pointsize
-
legend_title_font_rotation
-
legend_title_font_valign
-
margin
-
plot_title_font
-
projection
-
projection_type
-
right_margin
-
subplot_index
-
title
-
title_font
-
titlefontcolor
-
titlefontfamily
-
titlefonthalign
-
titlefontrotation
-
titlefontsize
-
titlefontvalign
-
titlelocation
-
top_margin
Plot attributes
-
background_color
-
background_color_outside
-
display_type
-
dpi
-
extra_kwargs
-
extra_plot_kwargs
-
fontfamily
-
foreground_color
-
html_output_format
-
inset_subplots
-
layout
-
link
-
overwrite_figure
-
plot_title
-
plot_titlefontcolor
-
plot_titlefontfamily
-
plot_titlefonthalign
-
plot_titlefontrotation
-
plot_titlefontsize
-
plot_titlefontvalign
-
plot_titleindex
-
plot_titlelocation
-
plot_titlevspan
-
pos
-
show
-
size
-
tex_output_standalone
-
thickness_scaling
-
warn_on_unsupported
-
window_title
Extract a subplot from an existing plot.
Examples
julia> p1, p2 = plot(1:2), plot(10:20)
julia> pl = plot(p1, p2) # plot containing 2 subplots
julia> plot(pl.subplots[1]) # extract 1st subplot as a standalone plot
julia> plot(pl.subplots[2]) # extract 2nd subplot as a standalone plot
#
Plots.bbox
— Function
bbox(x, y, w, h [,originargs...])
bbox(layout)
Create a bounding box for plotting
#
RecipesBase.grid
— Function
grid(args...; kw...)
Create a grid layout for subplots. args
specify the dimensions, e.g. grid(3,2, widths = (0.6,0.4))
creates a grid with three rows and two columns of different width.
#
RecipesBase.@layout
— Macro
@layout mat
Generate the subplots layout from a matrix of symbols (where subplots can span multiple rows or columns). Precise sizing can be achieved with curly brackets, otherwise the free space is equally split between the plot areas of subplots. You can use the _
character (underscore) to ignore plots in the layout (blank plots).
Examples
julia> @layout [a b; c]
2×1 Matrix{Any}:
Any[(label = :a, blank = false) (label = :b, blank = false)]
(label = :c, blank = false)
julia> @layout [a{0.3w}; b{0.2h}]
2×1 Matrix{Any}:
(label = :a, width = 0.3, height = :auto)
(label = :b, width = :auto, height = 0.2)
julia> @layout [_ ° _; ° ° °; ° ° °]
3×3 Matrix{Any}:
(label = :_, blank = true) … (label = :_, blank = true)
(label = :°, blank = false) (label = :°, blank = false)
(label = :°, blank = false) (label = :°, blank = false)
#
Plots.default
— Function
default(key)
returns the current default value for that key.
default(key, value)
sets the current default value for that key.
default(; kw...)
will set the current default value for each key/value pair.
default(plotattributes, key)
returns the key from plotattributes if it exists, otherwise default(key)
.
#
Plots.with
— Function
Allows temporary setting of backend and defaults for Plots. Settings apply only for the do
block. Example:
Plots.with(:gr, size=(400,400), type=:histogram) do plot(rand(10)) plot(rand(10)) end
#
Plots.arrow
— Method
arrow(args...)
Define arrowheads to apply to lines - args are style
(:open
or :closed
), side
(:head
, :tail
or :both
), headlength
and headwidth
#
Plots.center
— Method
return the centroid of a Shape
#
Plots.coords
— Method
return the vertex points from a Shape or Segments object
#
Plots.font
— Method
font(args...)
Create a Font from a list of features. Values may be specified either as arguments (which are distinguished by type/value) or as keyword arguments.
Arguments
-
family
: AbstractString. "serif" or "sans-serif" or "monospace" -
pointsize
: Integer. Size of font in points -
halign
: Symbol. Horizontal alignment (:hcenter, :left, or :right) -
valign
: Symbol. Vertical alignment (:vcenter, :top, or :bottom) -
rotation
: Real. Angle of rotation for text in degrees (use a non-integer type) -
color
: Colorant or Symbol
Examples
julia> font(8)
julia> font(family="serif", halign=:center, rotation=45.0)
#
Plots.makeshape
— Method
create a shape by picking points around the unit circle. n
is the number of point/sides, offset
is the starting angle
#
Plots.makestar
— Method
create a star by weaving together points from an outer and inner circle. n
is the number of arms
#
Plots.partialcircle
— Function
get an array of tuples of points on a circle with radius r
#
Plots.rotate
— Function
rotate an object in space
#
Plots.scale
— Function
scale(shape, x, y = x, c = center(shape))
scale!(shape, x, y = x, c = center(shape))
Scale shape by a factor.
#
Plots.scalefontsizes
— Method
scalefontsizes(factor::Number)
Scales all current font sizes by factor
. For example scalefontsizes(1.1)
increases all current font sizes by 10%. To reset to initial sizes, use scalefontsizes()
#
Plots.stroke
— Method
stroke(args...; alpha = nothing)
Define the properties of the stroke used in plotting lines
#
Plots.text
— Method
text(string, args...; kw...)
Create a PlotText object wrapping a string with font info, for plot annotations. args
and kw
are passed to font
.
#
Plots.translate
— Function
translate(shape, x, y = x)
translate!(shape, x, y = x)
Translate a Shape in space.
#
Plots.weave
— Method
interleave 2 vectors into each other (like a zipper’s teeth)
#
Plots.abline!
— Function
abline!([plot,] a, b; kwargs…)
Adds ax+b… straight line over the current plot, without changing the axis limits
#
Plots.annotate!
— Method
annotate!(anns)
annotate!(anns::Tuple...)
annotate!(x, y, txt)
Add annotations to an existing plot. Annotations are specified either as a vector of tuples, each of the form (x,y,txt)
, or as three vectors, x, y, txt
. Each txt
can be a String
, PlotText
PlotText (created with text(args...)
), or a tuple of arguments to text
(e.g., ("Label", 8, :red, :top)
).
Example
julia> plot(1:10)
julia> annotate!([(7,3,"(7,3)"),(3,7,text("hey", 14, :left, :top, :green))])
julia> annotate!([(4, 4, ("More text", 8, 45.0, :bottom, :red))])
julia> annotate!([2,5], [6,3], ["text at (2,6)", "text at (5,3)"])
#
Plots.areaplot
— Function
areaplot([x,] y)
areaplot!([x,] y)
Draw a stacked area plot of the matrix y.
Examples
julia> areaplot(1:3, [1 2 3; 7 8 9; 4 5 6], seriescolor = [:red :green :blue], fillalpha = [0.2 0.3 0.4])
#
Plots.bar!
— Method
bar(x,y)
bar!(x,y)
Make a bar plot of y
vs x
.
Keyword arguments
-
bar_position::Symbol
: Choose from:overlay
(default),:stack
. (warning: may only be partially implemented). Aliases: (:bar_positions, :barpositions). -
bar_width::Real
: Width of bars in data coordinates. Whennothing
, chooses based onx
(ory
whenorientation = :h
). Aliases: (:bar_widths, :barwidths). -
bar_edges::Bool
: Align bars to edges (true), or centers (the default) ?. -
fillrange::Union{Real, AbstractVector}
: Fills area between fillrange andy
for line-types, sets the base forbar
,sticks
types, and similar for other types. Aliases: (:fill_between, :fillbetween, :fillranges, :fillrng, :fillto, :frange). -
permute::Tuple{Symbol, Symbol}
: Permutes data and axis properties of the axes given in the tuple, e.g. (:x, :y). Aliases: (:permutes,).
Examples
julia> bar([1,2,3],[4,5,6],fillcolor=[:red,:green,:blue],fillalpha=[0.2,0.4,0.6])
julia> bar([(1,4),(2,5),(3,6)])
#
Plots.bar
— Method
bar(x,y)
bar!(x,y)
Make a bar plot of y
vs x
.
Keyword arguments
-
bar_position::Symbol
: Choose from:overlay
(default),:stack
. (warning: may only be partially implemented). Aliases: (:bar_positions, :barpositions). -
bar_width::Real
: Width of bars in data coordinates. Whennothing
, chooses based onx
(ory
whenorientation = :h
). Aliases: (:bar_widths, :barwidths). -
bar_edges::Bool
: Align bars to edges (true), or centers (the default) ?. -
fillrange::Union{Real, AbstractVector}
: Fills area between fillrange andy
for line-types, sets the base forbar
,sticks
types, and similar for other types. Aliases: (:fill_between, :fillbetween, :fillranges, :fillrng, :fillto, :frange). -
permute::Tuple{Symbol, Symbol}
: Permutes data and axis properties of the axes given in the tuple, e.g. (:x, :y). Aliases: (:permutes,).
Examples
julia> bar([1,2,3],[4,5,6],fillcolor=[:red,:green,:blue],fillalpha=[0.2,0.4,0.6])
julia> bar([(1,4),(2,5),(3,6)])
#
Plots.boxplot!
— Method
boxplot(x, y)
boxplot!(x, y)
Make a box and whisker plot.
Keyword arguments
-
notch
: Bool. Notch the box plot? (false) -
whisker_range
: Real. Whiskers extendwhisker_range
*IQR below the first quartile and above the third quartile. Values outside this range are shown as outliers (1.5) -
outliers
: Bool. Show outliers? (true) -
whisker_width
: Real or Symbol. Length of whiskers; the options are:match
to match the box width,:half
, or a number to indicate the total length. (:half)
Example
julia> using StatsPlots
julia> boxplot(repeat([1,2,3],outer=100),randn(300))
#
Plots.boxplot
— Method
boxplot(x, y)
boxplot!(x, y)
Make a box and whisker plot.
Keyword arguments
-
notch
: Bool. Notch the box plot? (false) -
whisker_range
: Real. Whiskers extendwhisker_range
*IQR below the first quartile and above the third quartile. Values outside this range are shown as outliers (1.5) -
outliers
: Bool. Show outliers? (true) -
whisker_width
: Real or Symbol. Length of whiskers; the options are:match
to match the box width,:half
, or a number to indicate the total length. (:half)
Example
julia> using StatsPlots
julia> boxplot(repeat([1,2,3],outer=100),randn(300))
#
Plots.contour!
— Method
contour(x,y,z)
contour!(x,y,z)
Draw contour lines of the surface z
.
Arguments
-
levels
: Contour levels (ifAbstractVector
) or number of levels (ifInteger
) -
fill
: Bool. Fill area between contours or draw contours only (false by default)
Example
julia> x = y = range(-20, stop = 20, length = 100)
julia> contour(x, y, (x, y) -> x^2 + y^2)
#
Plots.contour
— Method
contour(x,y,z)
contour!(x,y,z)
Draw contour lines of the surface z
.
Arguments
-
levels
: Contour levels (ifAbstractVector
) or number of levels (ifInteger
) -
fill
: Bool. Fill area between contours or draw contours only (false by default)
Example
julia> x = y = range(-20, stop = 20, length = 100)
julia> contour(x, y, (x, y) -> x^2 + y^2)
#
Plots.contourf!
— Method
An alias for contour
with fill = true.
#
Plots.contourf
— Method
An alias for contour
with fill = true.
#
Plots.curves!
— Method
curves(x,y)
curves!(x,y)
Draw a Bezier curve from (x[1],y[1])
to (x[end],y[end])
with control points (x[2],y[2]), ..., (x[end-1],y[end]-1)
.
Keyword arguments
-
fillrange::Union{Real, AbstractVector}
: Fills area between fillrange andy
for line-types, sets the base forbar
,sticks
types, and similar for other types. Aliases: (:fill_between, :fillbetween, :fillranges, :fillrng, :fillto, :frange).
Example
julia> curves([1,2,3,4],[1,1,2,4])
#
Plots.curves
— Method
curves(x,y)
curves!(x,y)
Draw a Bezier curve from (x[1],y[1])
to (x[end],y[end])
with control points (x[2],y[2]), ..., (x[end-1],y[end]-1)
.
Keyword arguments
-
fillrange::Union{Real, AbstractVector}
: Fills area between fillrange andy
for line-types, sets the base forbar
,sticks
types, and similar for other types. Aliases: (:fill_between, :fillbetween, :fillranges, :fillrng, :fillto, :frange).
Example
julia> curves([1,2,3,4],[1,1,2,4])
#
Plots.density!
— Method
density(x)
density!(x)
Make a line plot of a kernel density estimate of x. The smoothness of the density plot is defined from bandwidth
(real positive number).
Arguments
-
x
: AbstractVector of samples for probability density estimation
Keyword arguments
-
trim
::Bool: enables cutting off the distribution tails. -
bandwidth
::Number: a low bandwidth induces under-smoothing, whilst a high bandwidth induces over-smoothing.
Examples
julia> density(randn(100), bandwidth = -0.01, trim = false)
output : ERROR: Bandwidth must be positive
julia> density(randn(100), bandwidth = 0.1, trim = false) # a curve with extremity and under-smoothing
julia> density(randn(100), bandwidth = 10, trim = true) # a curve without extremity and over-smoothing
Example
julia> using StatsPlots
julia> density(randn(100_000))
#
Plots.density
— Method
density(x)
density!(x)
Make a line plot of a kernel density estimate of x. The smoothness of the density plot is defined from bandwidth
(real positive number).
Arguments
-
x
: AbstractVector of samples for probability density estimation
Keyword arguments
-
trim
::Bool: enables cutting off the distribution tails. -
bandwidth
::Number: a low bandwidth induces under-smoothing, whilst a high bandwidth induces over-smoothing.
Examples
julia> density(randn(100), bandwidth = -0.01, trim = false)
output : ERROR: Bandwidth must be positive
julia> density(randn(100), bandwidth = 0.1, trim = false) # a curve with extremity and under-smoothing
julia> density(randn(100), bandwidth = 10, trim = true) # a curve without extremity and over-smoothing
Example
julia> using StatsPlots
julia> density(randn(100_000))
#
Plots.heatmap!
— Method
heatmap(x,y,z)
heatmap!(x,y,z)
Plot a heatmap of the rectangular array z
.
Keyword arguments
-
aspect_ratio::Union{Real, Symbol}
: Plot area is resized so that 1 y-unit is the same size asaspect_ratio
x-units. With:none
, images inherit aspect ratio of the plot area. Use:equal
for unit aspect ratio. Aliases: (:aspectratios, :aspectratio, :aspectratios, :axisratio, :axisratio, :ratio).
Example
julia> heatmap(randn(10,10))
#
Plots.heatmap
— Method
heatmap(x,y,z)
heatmap!(x,y,z)
Plot a heatmap of the rectangular array z
.
Keyword arguments
-
aspect_ratio::Union{Real, Symbol}
: Plot area is resized so that 1 y-unit is the same size asaspect_ratio
x-units. With:none
, images inherit aspect ratio of the plot area. Use:equal
for unit aspect ratio. Aliases: (:aspectratios, :aspectratio, :aspectratios, :axisratio, :axisratio, :ratio).
Example
julia> heatmap(randn(10,10))
#
Plots.hexbin!
— Method
hexbin(x,y)
hexbin!(x,y)
Make a hexagonal binning plot (a histogram of the observations (x[i],y[i])
with hexagonal bins).
Example
julia> hexbin(randn(10_000), randn(10_000))
#
Plots.hexbin
— Method
hexbin(x,y)
hexbin!(x,y)
Make a hexagonal binning plot (a histogram of the observations (x[i],y[i])
with hexagonal bins).
Example
julia> hexbin(randn(10_000), randn(10_000))
#
Plots.histogram!
— Method
histogram(x)
histogram!(x)
Plot a histogram.
Arguments
-
x
: AbstractVector of values to be binned -
bins::Union{Integer, Symbol, Tuple{Integer, Integer}, AbstractVector}
: Default is :auto (the Freedman-Diaconis rule). For histogram-types, defines the approximate number of bins to aim for, or the auto-binning algorithm to use (:sturges, :sqrt, :rice, :scott or :fd). For fine-grained control pass a Vector of break values, e.g.range(minimum(x), stop = maximum(x), length = 25)
. Aliases: (:bin, :nb, :nbin, :nbins). -
weights
: Vector of weights for the values inx
, for weighted bin counts -
normalize::Union{Bool, Symbol}
: Histogram normalization mode. Possible values are: false/:none (no normalization, default), true/:pdf (normalize to a discrete PDF, where the total area of the bins is 1), :probability (bin heights sum to 1) and :density (the area of each bin, rather than the height, is equal to the counts - useful for uneven bin sizes). Aliases: (:norm, :normalized, :normalizes, :normed). -
bar_position::Symbol
: Choose from:overlay
(default),:stack
. (warning: may only be partially implemented). Aliases: (:bar_positions, :barpositions). -
bar_width::Real
: Width of bars in data coordinates. Whennothing
, chooses based onx
(ory
whenorientation = :h
). Aliases: (:bar_widths, :barwidths). -
bar_edges::Bool
: Align bars to edges (true), or centers (the default) ?. -
permute::Tuple{Symbol, Symbol}
: Permutes data and axis properties of the axes given in the tuple, e.g. (:x, :y). Aliases: (:permutes,).
Example
julia> histogram([1,2,1,1,4,3,8],bins=0:8)
julia> histogram([1,2,1,1,4,3,8],bins=0:8,weights=weights([4,7,3,9,12,2,6]))
#
Plots.histogram
— Method
histogram(x)
histogram!(x)
Plot a histogram.
Arguments
-
x
: AbstractVector of values to be binned -
bins::Union{Integer, Symbol, Tuple{Integer, Integer}, AbstractVector}
: Default is :auto (the Freedman-Diaconis rule). For histogram-types, defines the approximate number of bins to aim for, or the auto-binning algorithm to use (:sturges, :sqrt, :rice, :scott or :fd). For fine-grained control pass a Vector of break values, e.g.range(minimum(x), stop = maximum(x), length = 25)
. Aliases: (:bin, :nb, :nbin, :nbins). -
weights
: Vector of weights for the values inx
, for weighted bin counts -
normalize::Union{Bool, Symbol}
: Histogram normalization mode. Possible values are: false/:none (no normalization, default), true/:pdf (normalize to a discrete PDF, where the total area of the bins is 1), :probability (bin heights sum to 1) and :density (the area of each bin, rather than the height, is equal to the counts - useful for uneven bin sizes). Aliases: (:norm, :normalized, :normalizes, :normed). -
bar_position::Symbol
: Choose from:overlay
(default),:stack
. (warning: may only be partially implemented). Aliases: (:bar_positions, :barpositions). -
bar_width::Real
: Width of bars in data coordinates. Whennothing
, chooses based onx
(ory
whenorientation = :h
). Aliases: (:bar_widths, :barwidths). -
bar_edges::Bool
: Align bars to edges (true), or centers (the default) ?. -
permute::Tuple{Symbol, Symbol}
: Permutes data and axis properties of the axes given in the tuple, e.g. (:x, :y). Aliases: (:permutes,).
Example
julia> histogram([1,2,1,1,4,3,8],bins=0:8)
julia> histogram([1,2,1,1,4,3,8],bins=0:8,weights=weights([4,7,3,9,12,2,6]))
#
Plots.histogram2d!
— Method
histogram2d(x,y)
histogram2d!(x,y)
Plot a two-dimensional histogram.
Arguments
-
bins
: Number of bins (if anInteger
) or bin edges (if anAbtractVector
) -
weights
: Vector of weights for the values inx
. Each entry of x contributes its weight to the height of its bin.
Example
julia> histogram2d(randn(10_000),randn(10_000))
#
Plots.histogram2d
— Method
histogram2d(x,y)
histogram2d!(x,y)
Plot a two-dimensional histogram.
Arguments
-
bins
: Number of bins (if anInteger
) or bin edges (if anAbtractVector
) -
weights
: Vector of weights for the values inx
. Each entry of x contributes its weight to the height of its bin.
Example
julia> histogram2d(randn(10_000),randn(10_000))
#
Plots.hline!
— Method
hline(y)
hline!(y)
Draw horizontal lines at positions specified by the values in the AbstractVector y
.
Example
julia> hline([-1,0,2])
#
Plots.hline
— Method
hline(y)
hline!(y)
Draw horizontal lines at positions specified by the values in the AbstractVector y
.
Example
julia> hline([-1,0,2])
#
Plots.hspan!
— Method
hspan(y)
Draw a rectangle between the horizontal line at position y[1]
and the horizontal line at position y[2]
. If length(y) ≥ 4
, then further rectangles are drawn between y[3]
and y[4]
, y[5]
and y[6]
, and so on. If length(y)
is odd, then the last entry of y
is ignored.
Example
julia> hspan(1:6)
#
Plots.hspan
— Method
hspan(y)
Draw a rectangle between the horizontal line at position y[1]
and the horizontal line at position y[2]
. If length(y) ≥ 4
, then further rectangles are drawn between y[3]
and y[4]
, y[5]
and y[6]
, and so on. If length(y)
is odd, then the last entry of y
is ignored.
Example
julia> hspan(1:6)
#
Plots.lens!
— Function
lens!([plot,] x, y, inset = (sp_index, bbox(x1, x2, y1, y2)))
Magnify a region of a plot given by x
and y
. sp_index
is the index of the subplot and x1
, x2
, y1
and y2
should be between 0
and 1
.
#
Plots.mesh3d!
— Method
mesh3d(x,y,z)
mesh3d(x,y,z; connections)
Plot a 3d mesh. On Plotly the triangles can be specified using the connections argument.
Example
x=[0, 1, 2, 0]
y=[0, 0, 1, 2]
z=[0, 2, 0, 1]
i=[0, 0, 0, 1]
j=[1, 2, 3, 2]
k=[2, 3, 1, 3]
plot(x,y,z,seriestype=:mesh3d;connections=(i,j,k))
#
Plots.mesh3d
— Method
mesh3d(x,y,z)
mesh3d(x,y,z; connections)
Plot a 3d mesh. On Plotly the triangles can be specified using the connections argument.
Example
x=[0, 1, 2, 0]
y=[0, 0, 1, 2]
z=[0, 2, 0, 1]
i=[0, 0, 0, 1]
j=[1, 2, 3, 2]
k=[2, 3, 1, 3]
plot(x,y,z,seriestype=:mesh3d;connections=(i,j,k))
#
Plots.ohlc!
— Method
ohlc(x,y::Vector{OHLC})
ohlc!(x,y::Vector{OHLC})
Make open-high-low-close plot. Each entry of y is represented by a vertical segment extending from the low value to the high value, with short horizontal segments on the left and right indicating the open and close values, respectively.
Example
julia> meanprices = cumsum(randn(100))
julia> y = OHLC[(p+rand(),p+1,p-1,p+rand()) for p in meanprices]
julia> ohlc(y)
#
Plots.ohlc
— Method
ohlc(x,y::Vector{OHLC})
ohlc!(x,y::Vector{OHLC})
Make open-high-low-close plot. Each entry of y is represented by a vertical segment extending from the low value to the high value, with short horizontal segments on the left and right indicating the open and close values, respectively.
Example
julia> meanprices = cumsum(randn(100))
julia> y = OHLC[(p+rand(),p+1,p-1,p+rand()) for p in meanprices]
julia> ohlc(y)
#
Plots.path3d!
— Method
path3d(x,y,z)
path3d!(x,y,z)
Plot a 3D path from (x[1],y[1],z[1])
to (x[2],y[2],z[2])
, …, to (x[end],y[end],z[end])
.
Example
julia> path3d([0,1,2,3],[0,1,4,9],[0,1,8,27])
#
Plots.path3d
— Method
path3d(x,y,z)
path3d!(x,y,z)
Plot a 3D path from (x[1],y[1],z[1])
to (x[2],y[2],z[2])
, …, to (x[end],y[end],z[end])
.
Example
julia> path3d([0,1,2,3],[0,1,4,9],[0,1,8,27])
#
Plots.pie!
— Method
pie(x, y)
Plot a pie diagram.
Example
x = ["Nerds","Hackers","Scientists"]
y = [0.4,0.35,0.25]
pie(x, y, title="The Julia Community")
#
Plots.pie
— Method
pie(x, y)
Plot a pie diagram.
Example
x = ["Nerds","Hackers","Scientists"]
y = [0.4,0.35,0.25]
pie(x, y, title="The Julia Community")
#
Plots.plot3d
— Method
Plot with seriestype :path3d
#
Plots.quiver!
— Method
quiver(x,y,quiver=(u,v))
quiver!(x,y,quiver=(u,v))
Make a quiver (vector field) plot. The i
th vector extends from (x[i],y[i])
to (x[i] + u[i], y[i] + v[i])
.
Keyword arguments
-
arrow::Union{Bool, Plots.Arrow}
: Defines arrowheads that should be displayed at the end of path line segments (just before a NaN and the last non-NaN point). Used in quiverplot, streamplot, or similar. Aliases: (:arrows,).
Example
julia> quiver([1,2,3],[3,2,1],quiver=([1,1,1],[1,2,3]))
#
Plots.quiver
— Method
quiver(x,y,quiver=(u,v))
quiver!(x,y,quiver=(u,v))
Make a quiver (vector field) plot. The i
th vector extends from (x[i],y[i])
to (x[i] + u[i], y[i] + v[i])
.
Keyword arguments
-
arrow::Union{Bool, Plots.Arrow}
: Defines arrowheads that should be displayed at the end of path line segments (just before a NaN and the last non-NaN point). Used in quiverplot, streamplot, or similar. Aliases: (:arrows,).
Example
julia> quiver([1,2,3],[3,2,1],quiver=([1,1,1],[1,2,3]))
#
Plots.scatter!
— Method
scatter(x,y)
scatter!(x,y)
Make a scatter plot of y
vs x
.
Keyword arguments
-
markersize::Union{Real, AbstractVector}
: Size (radius pixels) of the markers. Aliases: (:markersizes, :ms, :msize). -
markercolor::Union{Integer, Symbol, ColorSchemes.ColorScheme, ColorTypes.Colorant}
: Color of the interior of the marker or shape.:match
will take the value from:seriescolor
. Aliases: (:markercolors, :markercolour, :mc, :mcolor, :mcolour). -
markershape::Union{Symbol, Plots.Shape, AbstractVector}
: Choose from [:none, :auto, :circle, :rect, :star5, :diamond, :hexagon, :cross, :xcross, :utriangle, :dtriangle, :rtriangle, :ltriangle, :pentagon, :heptagon, :octagon, :star4, :star6, :star7, :star8, :vline, :hline, :+, :x]. Aliases: (:markershapes, :shape). -
markeralpha::Real
: The alpha/opacity override for the marker interior.nothing
(the default) means it will take the alpha value of markercolor. Aliases: (:ma, :malpha, :markeralphas, :markeropacity, :mopacity, :mα).
Examples
julia> scatter([1,2,3],[4,5,6],markersize=[3,4,5],markercolor=[:red,:green,:blue])
julia> scatter([(1,4),(2,5),(3,6)])
#
Plots.scatter
— Method
scatter(x,y)
scatter!(x,y)
Make a scatter plot of y
vs x
.
Keyword arguments
-
markersize::Union{Real, AbstractVector}
: Size (radius pixels) of the markers. Aliases: (:markersizes, :ms, :msize). -
markercolor::Union{Integer, Symbol, ColorSchemes.ColorScheme, ColorTypes.Colorant}
: Color of the interior of the marker or shape.:match
will take the value from:seriescolor
. Aliases: (:markercolors, :markercolour, :mc, :mcolor, :mcolour). -
markershape::Union{Symbol, Plots.Shape, AbstractVector}
: Choose from [:none, :auto, :circle, :rect, :star5, :diamond, :hexagon, :cross, :xcross, :utriangle, :dtriangle, :rtriangle, :ltriangle, :pentagon, :heptagon, :octagon, :star4, :star6, :star7, :star8, :vline, :hline, :+, :x]. Aliases: (:markershapes, :shape). -
markeralpha::Real
: The alpha/opacity override for the marker interior.nothing
(the default) means it will take the alpha value of markercolor. Aliases: (:ma, :malpha, :markeralphas, :markeropacity, :mopacity, :mα).
Examples
julia> scatter([1,2,3],[4,5,6],markersize=[3,4,5],markercolor=[:red,:green,:blue])
julia> scatter([(1,4),(2,5),(3,6)])
#
Plots.scatter3d!
— Method
scatter3d(x,y,z)
scatter3d!(x,y,z)
Make a 3D scatter plot.
Example
julia> scatter3d([0,1,2,3],[0,1,4,9],[0,1,8,27])
#
Plots.scatter3d
— Method
scatter3d(x,y,z)
scatter3d!(x,y,z)
Make a 3D scatter plot.
Example
julia> scatter3d([0,1,2,3],[0,1,4,9],[0,1,8,27])
#
Plots.scatterhist!
— Method
scatterhist(x)
scatterhist!(x)
Make a histogram scatter plot (bin counts are represented using points instead of bars). See histogram
.
#
Plots.scatterhist
— Method
scatterhist(x)
scatterhist!(x)
Make a histogram scatter plot (bin counts are represented using points instead of bars). See histogram
.
#
Plots.stephist!
— Method
stephist(x)
stephist!(x)
Make a histogram step plot (bin counts are represented using horizontal lines instead of bars). See histogram
.
#
Plots.stephist
— Method
stephist(x)
stephist!(x)
Make a histogram step plot (bin counts are represented using horizontal lines instead of bars). See histogram
.
#
Plots.sticks!
— Method
sticks(x,y)
sticks!(x,y)
Draw a stick plot of y
vs x
.
Arguments
-
fillrange::Union{Real, AbstractVector}
: Fills area between fillrange andy
for line-types, sets the base forbar
,sticks
types, and similar for other types. Aliases: (:fill_between, :fillbetween, :fillranges, :fillrng, :fillto, :frange). -
markershape::Union{Symbol, Plots.Shape, AbstractVector}
: Choose from [:none, :auto, :circle, :rect, :star5, :diamond, :hexagon, :cross, :xcross, :utriangle, :dtriangle, :rtriangle, :ltriangle, :pentagon, :heptagon, :octagon, :star4, :star6, :star7, :star8, :vline, :hline, :+, :x]. Aliases: (:markershapes, :shape).
Example
julia> sticks(1:10)
#
Plots.sticks
— Method
sticks(x,y)
sticks!(x,y)
Draw a stick plot of y
vs x
.
Arguments
-
fillrange::Union{Real, AbstractVector}
: Fills area between fillrange andy
for line-types, sets the base forbar
,sticks
types, and similar for other types. Aliases: (:fill_between, :fillbetween, :fillranges, :fillrng, :fillto, :frange). -
markershape::Union{Symbol, Plots.Shape, AbstractVector}
: Choose from [:none, :auto, :circle, :rect, :star5, :diamond, :hexagon, :cross, :xcross, :utriangle, :dtriangle, :rtriangle, :ltriangle, :pentagon, :heptagon, :octagon, :star4, :star6, :star7, :star8, :vline, :hline, :+, :x]. Aliases: (:markershapes, :shape).
Example
julia> sticks(1:10)
#
Plots.surface!
— Method
surface(x,y,z)
surface!(x,y,z)
Draw a 3D surface plot.
Example
julia> using LinearAlgebra
julia> x = y = range(-3, stop = 3, length = 100)
julia> surface(x, y, (x, y) -> sinc(norm([x, y])))
#
Plots.surface
— Method
surface(x,y,z)
surface!(x,y,z)
Draw a 3D surface plot.
Example
julia> using LinearAlgebra
julia> x = y = range(-3, stop = 3, length = 100)
julia> surface(x, y, (x, y) -> sinc(norm([x, y])))
#
Plots.title!
— Method
Add title to an existing plot
#
Plots.violin!
— Method
violin(x,y,z)
violin!(x,y,z)
Make a violin plot.
Example
julia> violin(repeat([1,2,3],outer=100),randn(300))
#
Plots.violin
— Method
violin(x,y,z)
violin!(x,y,z)
Make a violin plot.
Example
julia> violin(repeat([1,2,3],outer=100),randn(300))
#
Plots.vline!
— Method
vline(x)
vline!(x)
Draw vertical lines at positions specified by the values in the AbstractVector x
.
Example
julia> vline([-1,0,2])
#
Plots.vline
— Method
vline(x)
vline!(x)
Draw vertical lines at positions specified by the values in the AbstractVector x
.
Example
julia> vline([-1,0,2])
#
Plots.vspan!
— Method
vspan(x)
Draw a rectangle between the vertical line at position x[1]
and the vertical line at position x[2]
. If length(x) ≥ 4
, then further rectangles are drawn between x[3]
and x[4]
, x[5]
and x[6]
, and so on. If length(x)
is odd, then the last entry of x
is ignored.
Example
julia> vspan(1:6)
#
Plots.vspan
— Method
vspan(x)
Draw a rectangle between the vertical line at position x[1]
and the vertical line at position x[2]
. If length(x) ≥ 4
, then further rectangles are drawn between x[3]
and x[4]
, x[5]
and x[6]
, and so on. If length(x)
is odd, then the last entry of x
is ignored.
Example
julia> vspan(1:6)
#
Plots.wireframe!
— Method
wireframe(x,y,z)
wireframe!(x,y,z)
Draw a 3D wireframe plot.
Example
julia> wireframe(1:10,1:10,randn(10,10))
#
Plots.wireframe
— Method
wireframe(x,y,z)
wireframe!(x,y,z)
Draw a 3D wireframe plot.
Example
julia> wireframe(1:10,1:10,randn(10,10))
#
Plots.xaxis!
— Method
Specify x axis attributes for an existing plot
#
Plots.xerror!
— Method
xerror(x, y [, z]; xerror = vals)
xerror!(x, y [, z]; xerror = vals)
Create or add a series of xerrorbars at the positions defined by x
, y
and z
with the lenghts defined in vals
.
Markerstrokecolor will color the whole errorbars if not specified otherwise.
#
Plots.xerror
— Method
xerror(x, y [, z]; xerror = vals)
xerror!(x, y [, z]; xerror = vals)
Create or add a series of xerrorbars at the positions defined by x
, y
and z
with the lenghts defined in vals
.
Markerstrokecolor will color the whole errorbars if not specified otherwise.
#
Plots.xflip!
— Function
Flip the current plots' x axis
#
Plots.xgrid!
— Method
Specify x grid attributes for an existing plot
#
Plots.xlabel!
— Method
Add xlabel to an existing plot
#
Plots.xlims!
— Method
Set xlims for an existing plot
#
Plots.xticks!
— Method
Set xticks for an existing plot
#
Plots.yaxis!
— Method
Specify y axis attributes for an existing plot
#
Plots.yerror!
— Method
yerror(x, y [, z]; yerror = vals)
yerror!(x, y [, z]; yerror = vals)
Create or add a series of yerrorbars at the positions defined by x
, y
and z
with the lenghts defined in vals
.
Markerstrokecolor will color the whole errorbars if not specified otherwise.
#
Plots.yerror
— Method
yerror(x, y [, z]; yerror = vals)
yerror!(x, y [, z]; yerror = vals)
Create or add a series of yerrorbars at the positions defined by x
, y
and z
with the lenghts defined in vals
.
Markerstrokecolor will color the whole errorbars if not specified otherwise.
#
Plots.yflip!
— Function
Flip the current plots' y axis
#
Plots.ygrid!
— Method
Specify y grid attributes for an existing plot
#
Plots.ylabel!
— Method
Add ylabel to an existing plot
#
Plots.ylims!
— Method
Set ylims for an existing plot
#
Plots.yticks!
— Method
Set yticks for an existing plot
#
Plots.zaxis!
— Method
Specify z axis attributes for an existing plot
#
Plots.zerror!
— Method
zerror(x, y [, z]; zerror = vals)
zerror!(x, y [, z]; zerror = vals)
Create or add a series of zerrorbars at the positions defined by x
, y
and z
with the lenghts defined in vals
.
Markerstrokecolor will color the whole errorbars if not specified otherwise.
#
Plots.zerror
— Method
zerror(x, y [, z]; zerror = vals)
zerror!(x, y [, z]; zerror = vals)
Create or add a series of zerrorbars at the positions defined by x
, y
and z
with the lenghts defined in vals
.
Markerstrokecolor will color the whole errorbars if not specified otherwise.
#
Plots.zflip!
— Function
Flip the current plots' z axis
#
Plots.zgrid!
— Method
Specify z grid attributes for an existing plot
#
Plots.zlabel!
— Method
Add zlabel to an existing plot
#
Plots.zlims!
— Method
Set zlims for an existing plot
#
Plots.zticks!
— Method
Set zticks for an existing plot
Animations
#
RecipesBase.animate
— Function
Animate from an iterator which returns the plot args each iteration.
#
Plots.frame
— Function
frame(animation[, plot])
Add a plot (the current plot if not specified) to an existing animation
#
Plots.gif
— Function
gif(animation[, filename]; fps=20, loop=0, variable_palette=false, verbose=false, show_msg=true)
Creates an animated .gif-file from an Animation
object.
#
Plots.mov
— Function
mov(animation[, filename]; fps=20, loop=0, verbose=false, show_msg=true)
Creates an .mov-file from an Animation
object.
#
Plots.mp4
— Function
mp4(animation[, filename]; fps=20, loop=0, verbose=false, show_msg=true)
Creates an .mp4-file from an Animation
object.
#
Plots.webm
— Function
webm(animation[, filename]; fps=20, loop=0, verbose=false, show_msg=true)
Creates an .webm-file from an Animation
object.
#
Plots.@animate
— Macro
Collect one frame per for-block iteration and return an Animation
object.
Example:
p = plot(1) anim = @animate for x=0:0.1:5 push!(p, 1, sin(x)) end gif(anim)
This macro supports additional parameters, that may be added after the main loop body.
-
Add
every n
with positive Integer n, to take only one frame every nth iteration. -
Add
when <cond>
where<cond>
is an Expression resulting in a Boolean, to take a frame only when<cond>
returnstrue
. Is incompatible withevery
.
#
Plots.@gif
— Macro
Builds an Animation
using one frame per loop iteration, then create an animated GIF.
Example:
p = plot(1) @gif for x=0:0.1:5 push!(p, 1, sin(x)) end
This macro supports additional parameters, that may be added after the main loop body.
-
Add
fps=n
with positive Integer n, to specify the desired frames per second. -
Add
every n
with positive Integer n, to take only one frame every nth iteration. -
Add
when <cond>
where<cond>
is an Expression resulting in a Boolean, to take a frame only when<cond>
returnstrue
. Is incompatible withevery
.
Retriever
#
Plots.backend_object
— Function
backend_object(plot)
Returns the backend representation of a Plot object. Returns nothing
if the backend does not support this.
#
Plots.plotattr
— Function
plotattr([attr])
Look up the properties of a Plots attribute, or specify an attribute type. Options are Series, Subplot, Plot, Axis. Call plotattr()
to search for an attribute via fuzzy finding. The information is the same as that given on https://docs.juliaplots.org/latest/attributes/.
Output
#
Base.Multimedia.display
— Function
display(x)
display(d::AbstractDisplay, x)
display(mime, x)
display(d::AbstractDisplay, mime, x)
Display x
using the topmost applicable display in the display stack, typically using the richest supported multimedia output for x
, with plain-text stdout
output as a fallback. The display(d, x)
variant attempts to display x
on the given display d
only, throwing a MethodError
if d
cannot display objects of this type.
In general, you cannot assume that display
output goes to stdout
(unlike print(x)
or show(x)
). For example, display(x)
may open up a separate window with an image. display(x)
means "show x
in the best way you can for the current output device(s)." If you want REPL-like text output that is guaranteed to go to stdout
, use show(stdout, "text/plain", x)
instead.
There are also two variants with a mime
argument (a MIME type string, such as "image/png"
), which attempt to display x
using the requested MIME type only, throwing a MethodError
if this type is not supported by either the display(s) or by x
. With these variants, one can also supply the "raw" data in the requested MIME type by passing x::AbstractString
(for MIME types with text-based storage, such as text/html or application/postscript) or x::Vector{UInt8}
(for binary MIME types).
To customize how instances of a type are displayed, overload show
rather than display
, as explained in the manual section on custom pretty-printing.
#
Plots.addExtension
— Method
addExtension(filepath, extension)
Change filepath extension according to the extension map
#
Plots.closeall
— Method
Close all open gui windows of the current backend
#
Plots.savefig
— Method
savefig([plot,] filename)
Save a Plot (the current plot if plot
is not passed) to file. The file type is inferred from the file extension. All backends support png and pdf file types, some also support svg, ps, eps, html and tex.