Zonal Harmonic Gravity Model
blockType: SubSystem
Path in the library:
|
Description
Block Zonal Harmonic Gravity Model Calculates the zonal harmonic representation of planetary gravity at a specific point based on the planetary gravitational potential. This block allows you to conveniently describe the gravitational field of a planet outside its surface. By default, the block uses the fourth-order zonal coefficient for the Earth to calculate the zonal harmonic gravity. You can also specify a zone coefficient of the second or third order. This block is implemented using the usage of the following values of planetary parameters for each planet:
The planet | Equatorial radius ( ), m | Gravitational parameter ( ), m3/s2 | Zonal harmonic coefficients ( ) |
---|---|---|---|
The Earth |
6 378 136.3 |
3.986004415 × 10¹⁴ |
[1.0826269 × 10⁻³, -2.5323 × 10⁻⁶, -1.6204 × 10⁻⁶] |
Jupiter |
71 492 000 |
1.268 × 10¹⁷ |
[1.475 × 10⁻², 0, -5.8 × 10⁻⁴] |
Mars |
3 397 200 |
4.305 × 10¹³ |
[1.964 × 10⁻³, 3.6 × 10⁻⁵] |
Mercury |
2 439 000 |
2.2032 × 10¹³ |
6.0 × 10⁻⁵ |
The moon |
1 738 000 |
4.902799 × 10⁹ |
2.027 × 10⁻⁴ |
Neptune |
24 764 000 |
6.809 × 10¹⁵ |
4.0 × 10⁻³ |
Saturn |
60 268 000 |
3.794 × 10¹⁶ |
[1.645 × 10⁻², 0, -1.0 × 10⁻³] |
Uranium |
25 559 000 |
5.794 × 10¹⁵ |
1.2 × 10⁻² |
Venus |
6 052 000 |
3.257 × 10¹⁴ |
2.7 × 10⁻⁵ |
The block does not take into account the influence of centrifugal forces arising from the rotation of the planet, as well as the influence of the precession of the reference frame.
Ports
Input
#
xecef (m)
—
coordinates in the Greenwich rectangular coordinate system
`matrix 3 by m
Details
Coordinates in the Greenwich rectangular coordinate system.
Data types |
|
Complex numbers support |
No |
Output
#
gecef (m/s2)
—
gravity values
`matrix 3 by m
Details
Gravity values returned in the Greenwich rectangular coordinate system.
Data types |
|
Complex numbers support |
No |
Parameters
Main
#
Degree —
harmonic order
4
| 3
| 2
Details
The order of the harmonic model:
-
2
is the second order, , the most significant and weighty term of the spherical harmonic, which takes into account the flattening of the planet; -
3
- third order, ; -
4
is the fourth order, .
Values |
|
Default value |
|
Program usage name |
|
Tunable |
No |
Evaluatable |
Yes |
Planet
#
Planet model —
planet
Mercury
| Venus
| Earth
| Moon
| Mars
| Jupiter
| Saturn
| Uranus
| Neptune
| Custom
Details
Planetary model.
Values |
|
Default value |
|
Program usage name |
|
Tunable |
No |
Evaluatable |
Yes |
# Equatorial radius — equatorial radius
Details
The equatorial radius of a planet.
Dependencies
To use this parameter, set the parameter Planet model to Custom
.
Default value |
|
Program usage name |
|
Tunable |
No |
Evaluatable |
Yes |
# Gravitational parameter — gravity parameter
Details
Planetary gravitational parameters.
Dependencies
To use this parameter, set the parameter Planet model to Custom
.
Default value |
|
Program usage name |
|
Tunable |
No |
Evaluatable |
Yes |
# J values — zonal harmonic coefficients
Details
Zone harmonic coefficients.
Dependencies
To use this parameter, set the Planet model parameters to Custom
.
Default value |
|
Program usage name |
|
Tunable |
No |
Evaluatable |
Yes |
Literature
-
Vallado, David, Fundamentals of Astrodynamics and Applications. New York: McGraw-Hill, 1997.
-
Fortescue, P., J. Stark, G. Swinerd, eds. Spacecraft Systems Engineering, 3d ed. West Sussex: Wiley & Sons, 2003.
-
Tewari, A. Atmospheric and Space Flight Dynamics Modeling and Simulation with MATLAB and Simulink. Boston: Birkhäuser, 2007.