Zonal Harmonic Gravity Model
Page in progress. |
blockType: SubSystem
Path in the library:
|
Description
The block Zonal Harmonic Gravity Model calculates the zonal Harmonic representation of planetary gravity at a particular point based on the planetary gravitational potential. This block allows to conveniently describe the gravitational field of a planet beyond its surface. By default, the block uses a fourth-order zonal coefficient for Earth to calculate zonal harmonic gravity. You can also specify a second or third order zonal coefficient. This block is implemented with usage of the following values of planetary parameters for each planet:
Planet | Equatorial radius ( ), m | Gravitational parameters ( ), m³/s² | Zonal harmonic coefficients ( ) |
---|---|---|---|
Earth |
6 378 136.3 |
3.986004415 × 10¹⁴ |
[1.0826269 × 10-³, -2.5323 × 10-⁶, -1.6204 × 10-⁶] |
Jupiter |
71 492 000 |
1.268 × 10¹⁷ |
[1.475 × 10-², 0, -5.8 × 10-⁴] |
Mars |
3 397 200 |
4.305 × 10¹³ |
[1.964 × 10-³, 3.6 × 10-⁵] |
Mercury |
2 439 000 |
2.2032 × 10¹³ |
6.0 × 10-⁵ |
Moon |
1 738 000 |
4.902799 × 10⁹ |
2.027 × 10-⁴ |
Neptune |
24 764 000 |
6.809 × 10¹⁵ |
4.0 × 10-³ |
Saturn |
60 268 000 |
3.794 × 10¹⁶ |
[1.645 × 10-², 0, -1.0 × 10-³] |
Uranus |
25 559 000 |
5.794 × 10¹⁵ |
1.2 × 10-² |
Venus |
6 052 000 |
3.257 × 10¹⁴ |
2.7 × 10-⁵ |
The block does not take into account the effect of centrifugal forces arising from the rotation of the planet, as well as the effect of the precession of the reference frame.
Ports
Input
#
xecef (m)
—
coordinates in the Greenwich rectangular coordinate system
`matrix 3 by m
Details
Coordinates in the Greenwich rectangular coordinate system.
Data types |
|
Complex numbers support |
No |
Output
#
gecef (m/s2)
—
gravity values
`matrix 3 by m
Details
Gravity values returned in the Greenwich rectangular coordinate system.
Data types |
|
Complex numbers support |
No |
Parameters
Main
#
Degree —
harmonic order
4
| 3
| 2
Details
The order of the harmonic model:
-
2
is the second order, , the most significant and weighty term of the spherical harmonic, which takes into account the flattening of the planet; -
3
- third order, ; -
4
is the fourth order, .
Values |
|
Default value |
|
Program usage name |
|
Tunable |
No |
Evaluatable |
Yes |
Planet
#
Planet model —
planet
Mercury
| Venus
| Earth
| Moon
| Mars
| Jupiter
| Saturn
| Uranus
| Neptune
| Custom
Details
Planetary model.
Values |
|
Default value |
|
Program usage name |
|
Tunable |
No |
Evaluatable |
Yes |
# Equatorial radius — equatorial radius
Details
The equatorial radius of a planet.
Dependencies
To use this parameter, set the parameter Planet model to Custom
.
Default value |
|
Program usage name |
|
Tunable |
No |
Evaluatable |
Yes |
# Gravitational parameter — gravity parameter
Details
Planetary gravitational parameters.
Dependencies
To use this parameter, set the parameter Planet model to Custom
.
Default value |
|
Program usage name |
|
Tunable |
No |
Evaluatable |
Yes |
# J values — zonal harmonic coefficients
Details
Zone harmonic coefficients.
Dependencies
To use this parameter, set the Planet model parameters to Custom
.
Default value |
|
Program usage name |
|
Tunable |
No |
Evaluatable |
Yes |
Literature
-
Vallado, David, Fundamentals of Astrodynamics and Applications. New York: McGraw-Hill, 1997.
-
Fortescue, P., J. Stark, G. Swinerd, eds. Spacecraft Systems Engineering, 3d ed. West Sussex: Wiley & Sons, 2003.
-
Tewari, A. Atmospheric and Space Flight Dynamics Modeling and Simulation with MATLAB and Simulink. Boston: Birkhäuser, 2007.