Engee documentation

n-D Lookup Table

Approximate n-dimensional function.

n d lookup table

Description

Block n-D Lookup Table calculates the sample representation of the function from variables:

,

where the function can be empirical.

Block icon n-D Lookup Table displays the graph of the function defined in the block.

The block maps the input data to the output value by searching or interpolating a table of values that are defined by the parameters of the block. The block supports the following interpolation methods: Flat, Linear point-slope, Linear Lagrange, Nearest и Cubic spline. You can apply these methods to a table of any dimension from 1 to 30.

Read more about interpolation methods here: Methods of approximation of function values

In the next block, the first input identifies the anchor points of the first dimension (row), the second input identifies the anchor points of the second dimension (column), and so on.

n d lookup table 1

Specification of reference points and tabular data

These block parameters define the reference points and table data.

Block parameters Purpose

Number of dimensions

Specifies the number of measurements in the table.

Breakpoints 1

Specifies the vector of reference points corresponding to each measurement in the table.

Table data

Specifies the associated set of output values.

How the block generates output data

Block n-D Lookup Table generates output data by searching or evaluating table values based on input values.

Block inputs Block behaviour n-D Lookup Table

Matches the index values in the reference point vectors.

Outputs a tabular value at the intersection of rows, columns and higher dimensions.

Do not match the index values in the datasets of the reference points, but are within the range.

Interpolates the corresponding table values using the selected Interpolation method.

Do not match the index values in the datasets of the reference points and are out of range.

Extrapolates the output value using the selected . Extrapolation method.

Other blocks that perform equivalent operations

You can use the Interpolation Using Prelookup block with the Prelookup block to perform an equivalent operation to the n-D Lookup Table. This combination of blocks provides more flexibility, which can lead to more efficient modelling for linear interpolations.

Ports

Output

# OUT_1 — output data calculated by searching or evaluating table values
scalar | vector | matrix

Details

Output data generated by searching or evaluating table values based on input values.

When the input data of a block…​ Then the block n-D Lookup Table…​

Compares index values in sets of reference points.

Outputs a tabular value at the intersection of rows, columns and higher dimensions of the reference points.

Do not match the index values in the reference point sets, but are within range.

Interpolates the corresponding table values using the one you selected Interpolation method.

Do not match the index values in the reference point sets and are out of range.

Extrapolates the output value using the one you selected Extrapolation method.

Data types

Float64

Complex numbers support

Yes

Input

# u1 — input data of the first dimension (rows)
scalar | vector | matrix

Details

_No description._The real input data to port u1, matched to an output value by searching or interpolating a table of values you define.

Example: collect(1:10).

Data types

Float16, Float32, Float64, Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128

Complex numbers support

Yes

# u2 — input data of the 2nd measurement
scalar | vector | matrix

Details

Real input data to port u2, matched to an output value by searching or interpolating a table of values you define.

Example: collect(1:10).

Data types

Float16, Float32, Float64, Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128

Complex numbers support

Yes

# uN — input data of the Nth measurement
scalar | vector | matrix

Details

Real input data on port uN, matched to an output value by searching or interpolating a table of values you define.

Example: collect(1:10).

Data types

Float16, Float32, Float64, Int8, Int16, Int32, Int64, Int128, UInt8, UInt16, UInt32, UInt64, UInt128

Complex numbers support

Yes

Parameters

Основные

# Number of dimensions — number of table measurements
Real number

Details

Enter the number of dimensions in the lookup table. This parameters defines:

  • The number of independent variables for the table and the number of block inputs.

  • The number of reference point sets to specify.

To specify…​ Need to do…​

1, 2, 3, or 4.

Enter a positive integer directly into the field.

A larger number of table sizes.

Enter a positive integer directly in the field.

The maximum number of table sizes supported by this block is 30.

For example, a table with dimension to to means that dimension size 1 is equal to , dimension size 2 is equal to and so on. must match the first anchor point, must match the second anchor point and so on.

Default value

3

Program usage name

NumberOfTableDimensions

Tunable

No

Evaluatable

Yes

# Table data — defining the output value table
Array of real and/or complex numbers

Details

Enter the output value table.

Default value

reshape(repeat([4 5 6;16 19 20;10 18 23],1,2),(3,3,2))

Program usage name

Table

Tunable

Yes

Evaluatable

Yes

# Breakpoints 1 — reference point values for the nth measurement
Array of real numbers

Details

Reference points for the nth dimension.

The number of parameters for specifying the reference point values depends on the value of the parameter Number of dimensions.

Default value

[10, 22, 31]

Program usage name

BreakpointsForDimension1

Tunable

Yes

Evaluatable

Yes

Lookup method

# Interpolation method — method of interpolation between the values of reference points
Flat | Nearest | Linear point-slope | Linear Lagrange | Cubic spline

Details

When the input signal falls between the reference point values, the unit interpolates the output value using the neighbouring reference points.

Read more about interpolation methods here: Methods of approximation of function values

Values

Flat | Nearest | Linear point-slope | Linear Lagrange | Cubic spline

Default value

Linear point-slope

Program usage name

InterpMethod

Tunable

No

Evaluatable

No

# Extrapolation method — method of processing input values that go beyond the reference points
Clip | Linear | Cubic spline

Details

Choice of extrapolation method.

Read more about extrapolation methods here: Methods of approximation of function values

Dependencies

To choose Cubic spline for Extrapolation method, you must also select Cubic spline for Interpolation method.

Values

Clip | Linear | Cubic spline

Default value

Linear

Program usage name

ExtrapMethod

Tunable

No

Evaluatable

No