Calculating arithmetic expressions
This example demonstrates how you can use the built-in Julia parser to analyze and calculate arithmetic expressions.
Introduction
The calculation of arithmetic expressions is the process by which the string representation of a mathematical expression is transformed into a data structure that can be interpreted and calculated. It is a key element of many software systems, such as calculators, compilers, and interpreters.
This process usually involves two main steps:
- Parsing - converting a string into abstract syntactic дерево (AST)
- Calculation - traversing the tree and performing mathematical operations
This approach is used in:
- Compilers and interpreters of programming languages
- Mathematical calculators
- Computer algebra systems
- Analysis of mathematical expressions in scientific computing
Working with an expression in Julia
Julia provides built-in functions for working with expressions and calculating them. Function Meta.parse() converts a string with a code into an object of the type Expr (expression), which is an abstract syntax tree.
# Определяем строку с арифметическим выражением
expr = "2 * (3 -1) + 2 * 5"
# Преобразуем строку в выражение (AST)
parsed = Meta.parse(expr) # Julia предоставляет низкоуровневый доступ к парсеру языка для создания AST/Expr
After parsing, we get an object of the type Expr, which is an abstract syntax tree (AST). This is a tree structure where each node corresponds to an operation or operand.
# Получаем тип объекта
t = typeof(parsed)
An object of the type Expr has fields:
:head— node type (for example, addition operation :+):args— node arguments (operands)
# Просматриваем поля типа Expr
fieldnames(t) # показывает поля типа
The main field for us is args, which contains the arguments of the expression.
For our expression, the first argument is an operation symbol. :+, and the rest of the arguments are subexpressions.
# Исследуем внутреннюю структуру объекта 'Expr'
parsed.args # Инспектируем содержимое типа 'Expr'
As you can see, expressions can be nested. The second argument of our expression is also an object of type Expr.
# Типы 'Expr' могут быть вложенными
typeof(parsed.args[2])
# Смотрим аргументы вложенного выражения
parsed.args[2].args
Going deeper down the tree, we reach the most basic elements — numbers and simple operations.
# Продолжаем спускаться до самого нижнего уровня AST
parsed.args[2].args[3].args # Будет вкладываться до самого низкого уровня AST
Finally, when the tree is built, we can calculate the result using the function eval().
# Вычисляем выражение
eval(parsed)
Additional examples
Let's demonstrate how the algorithm works on other expressions.:
# Более сложное выражение с делением
eval(Meta.parse("1 - 5 * 2 / 20 + 1"))
# Выражение с несколькими уровнями вложенности скобок
eval(Meta.parse("2 * (3 + ((5) / (7 - 11)))"))
Conclusion
We have reviewed the implementation of the algorithm for calculating arithmetic expressions in Julia, using the built-in language features for parsing and calculating expressions.
We succeeded:
-
Convert the string representation of a mathematical expression into an abstract syntax tree (AST)
-
Investigate the structure of the resulting tree
-
Perform the calculation of the expression, taking into account the priority of operations and parentheses.
This approach is useful for:
- Creation of mathematical calculators
- DSL (Domain-specific languages) development
- Building compilers and interpreters
- Analysis and processing of mathematical expressions in scientific applications
The example was developed using materials from Rosetta Code