Engee documentation
Notebook

Calculation of BER for QPSK

The Error Rate Calculation block calculates the error rate by bits (bit error rate, BER). Using this block, we can obtain BER data for the communication system and analyze the effectiveness of our system. In this example, we will look at a simple QPSK receiver and transmitter model. It is shown in the picture below.

image.png

Next, we will set an auxiliary function to run the model.

In [ ]:
# Enabling the auxiliary model launch function.
function run_model( name_model)
    
    Path = (@__DIR__) * "/" * name_model * ".engee"
    
    if name_model in [m.name for m in engee.get_all_models()] # Checking the condition for loading a model into the kernel
        model = engee.open( name_model ) # Open the model
        model_output = engee.run( model, verbose=true ); # Launch the model
    else
        model = engee.load( Path, force=true ) # Upload a model
        model_output = engee.run( model, verbose=true ); # Launch the model
        engee.close( name_model, force=true ); # Close the model
    end
    sleep(5)
    return model_output
end
Out[0]:
run_model (generic function with 1 method)

Next, we will initialize the signal-to-noise ratio indicators for our model and declare a bit error variable.

In [ ]:
EbNoArr = collect(-9:3:9);
Eb_No = 0;
ber = zeros(length(EbNoArr));
BER = 0;

Now let's run the model at different values of the signal-to-noise ratio.

In [ ]:
for i in 1:length(EbNoArr)
    Eb_No = EbNoArr[i]
    run_model("QPSK") # Launching the model.
    BER = collect(BER)
    ber[i]=BER.value[end][1]
    println("BER: $(ber[i])")
end
Building...
Progress 0%
Progress 38%
Progress 100%
BER: 0.3271484375
Building...
Progress 0%
Progress 28%
Progress 100%
BER: 0.25244140625
Building...
Progress 0%
Progress 32%
Progress 100%
BER: 0.1611328125
Building...
Progress 0%
Progress 76%
Progress 100%
BER: 0.07275390625
Building...
Progress 0%
Progress 44%
Progress 100%
BER: 0.01904296875
Building...
Progress 0%
Progress 57%
Progress 100%
BER: 0.00244140625
Building...
Progress 0%
Progress 57%
Progress 100%
BER: 0.0

Let's plot the BER graph.

In [ ]:
using SpecialFunctions
function berawgn_psk(EbNo_dB, M)
    EbNo = 10 .^ (EbNo_dB ./ 10)
    if M == 2
        return 0.5 .* erfc.(sqrt.(EbNo))# similarly for QPSK with Gray encoding
    else
        k = log2(M)
        return 2 * erfc.(sqrt.(k .* EbNo) .* sin(π/M)) / k
    end
end
ber_ref = berawgn_psk(EbNoArr, 2)
println("__Eb_No__: $EbNoArr")
println("_ber_ref_: $(round.(ber_ref, digits=3))")
println("ber_model: $(round.(ber, digits=3))")

p1 = plot(EbNoArr, ber_ref, seriestype = :scatter, marker = :rect, label = "Theoretical QPSK", yscale = :log10)
plot!(p1, EbNoArr, ber, seriestype = :scatter, marker = :diamond, label = "Model QPSK")
xlabel!(p1, "Eb/No (dB)")
ylabel!(p1, "BER")
title!(p1, "Bit Error Rate (Log Scale)")
# Second graph: normal scale
p2 = plot(EbNoArr, ber_ref, seriestype = :scatter, marker = :rect, label = "")
plot!(p2, EbNoArr, ber, seriestype = :scatter, marker = :diamond, label = "")
ylabel!(p2, "BER")
title!(p2, "Bit Error Rate (Linear Scale)")

# The general conclusion: two graphs side by side
plot(p2, p1, layout = (2, 1), size=(1000,400))
__Eb_No__: [-9, -6, -3, 0, 3, 6, 9]
_ber_ref_: [0.308, 0.239, 0.158, 0.079, 0.023, 0.002, 0.0]
ber_model: [0.327, 0.252, 0.161, 0.073, 0.019, 0.002, 0.0]
Out[0]:

Conclusion

As you can see in this example, the higher the signal-to-noise ratio, the lower the error.
Here we have figured out how to build a BER graph for a simple communication system model and learned how to apply this method to analyze the system.