Engee documentation
Notebook

Parameterization of a two-winding power transformer

Description of the model

This example shows how to parameterize two-winding трансформатор according to the passport data and the verification of the calculation of the parameters was carried out. The model's appearance:

two_winding_transformer--1760427690692.png

Calculation of transformer parameters

As an example for calculation, let's take the turbofan engine-80000/110/10. Reference parameters [1]:

  • Rated power - 80 MVA;
  • Voltage VN - 115 kV;
  • Voltage NN - 10.5 kV;
  • Short-circuit voltage - 10.5 %;
  • Short circuit loss (short circuit) - 310 kW;
  • No-load loss - 70 kW;
  • No-load current (XX) - 0.6%.

Rated power, VA:

In [ ]:
Sn = 80e6;

Winding voltage VN, V:

In [ ]:
Uvn = 115e3;

Winding voltage NN, V:

In [ ]:
Unn = 10.5e3;

Short circuit voltage, %:

In [ ]:
Uk = 10.5;

Short circuit losses, W:

In [ ]:
Pkz = 310e3;

Losses XX, W:

In [ ]:
Ph = 70e3;

Current XX, %:

In [ ]:
Ih = 0.6;

Calculation of winding parameters in named units

Active resistance of the windings:

In [ ]:
import Printf.@printf
Rvn = Pkz * Uvn^2 / (2 * Sn^2)
Rnn = Pkz * Unn^2 / (2 * Sn^2)
@printf "Active resistance of the high-voltage winding: %.3f ohms" Rvn
@printf "Active winding resistance NN: %.5f ohms" Rnn
Активное сопротивление обмотки ВН: 0.320 Ом
Активное сопротивление обмотки НН: 0.00267 Ом

Total resistance Z:

In [ ]:
Zvn = Uk / 100 * Uvn^2 / (2 * Sn)
Znn = Uk / 100 * Unn^2 / (2 * Sn)
@printf "Total resistance of the high-voltage winding: %.3f ohms" Zvn
@printf "Total winding resistance of NN: %.5f ohms" Znn
Полное сопротивление обмотки ВН: 8.679 Ом
Полное сопротивление обмотки НН: 0.07235 Ом

Inductive resistance X:

In [ ]:
Xvn = sqrt(Zvn^2 - Rvn^2)
Xnn = sqrt(Znn^2 - Rnn^2)
@printf "Inductive resistance of the high-voltage winding: %.3f ohms" Xvn
@printf "Inductive resistance of the NN winding: %.5f ohms" Xnn
Индуктивное сопротивление обмотки ВН: 8.673 Ом
Индуктивное сопротивление обмотки НН: 0.07230 Ом

Inductance L:

In [ ]:
Lvn = Xvn / (2 * pi * 50)
Lnn = Xnn / (2 * pi * 50)
@printf "Winding inductance HH: %.3f Hh" Lvn
@printf "Winding inductance NN: %.5f Gn" Lnn
Индуктивность обмотки ВН: 0.028 Гн
Индуктивность обмотки НН: 0.00023 Гн

Total losses in XX mode:

In [ ]:
Sh = Ih / 100 * Sn
@printf "Total losses XX: %d VA" Sh
Полные потери ХХ: 480000 ВА

Magnetizing power of the Qh transformer:

In [ ]:
Qh = sqrt(Sh^2 - Ph^2)
@printf "Magnetizing power of the transformer: %d var" Qh
Намагничивающая мощность трансформатора: 474868 вар

Active resistance of the magnetization circuit Rm:

In [ ]:
Rm = Uvn^2 / Ph
@printf "Active resistance of the magnetization circuit: %d ohms" Rm
Активное сопротивление цепи намагничивания: 188929 Ом

Inductive resistance of the magnetization circuit Xm:

In [ ]:
Xm = Uvn^2 / Qh
@printf "Inductive resistance of the magnetization circuit: %d ohms" Xm
Индуктивное сопротивление цепи намагничивания: 27850 Ом

Inductance of the magnetization circuit:

In [ ]:
Lm = Xm / (2 * pi * 50)
@printf "Magnetization circuit inductance: %.3f Gn" Lm
Индуктивность цепи намагничивания: 88.649 Гн

Calculation of winding parameters in relative units

Active resistance R:

In [ ]:
R_pu = Pkz / (2 * Sn)
@printf "Active resistance of the high-voltage and low-voltage windings: %.5f O.E." R_pu
Активное сопротивление обмоток ВН и НН: 0.00194 о.е.

Total resistance Z:

In [ ]:
Z_pu = Uk / (2 * 100)
@printf "The total resistance of the high-voltage and low-voltage windings: %.5f O.E." Z_pu
Полное сопротивление обмоток ВН и НН: 0.05250 о.е.

Inductance L:

In [ ]:
L_pu = sqrt(Z_pu^2 - R_pu^2)
@printf "Inductance of the high-voltage and low-voltage windings: %.5f O.E." L_pu
Индуктивность обмоток ВН и НН: 0.05246 о.е.

Total losses in XX mode:

In [ ]:
Sh_pu = Ih / 100
@printf "Total losses in XX mode: %.3f O.E." Sh_pu
Полные потери в режиме ХХ: 0.006 о.е.

Magnetizing power of the transformer:

In [ ]:
Qh_pu = sqrt(Sh_pu^2 - (Ph / Sn)^2)
@printf "Magnetizing power of transformer: %.3f O.E." Qh_pu
Намагничивающая мощность трансформатора: 0.006 о.е.

Active resistance of the magnetization circuit:

In [ ]:
Rm_pu = Sn / Ph
@printf "Active resistance of the magnetization circuit: %.3f O.E." Rm_pu
Активное сопротивление цепи намагничивания: 1142.857 о.е.

Inductance of the magnetization circuit:

In [ ]:
Lm_pu = 1 / Qh_pu
@printf "Magnetization circuit inductance: %.3f O.E." Lm_pu
Индуктивность цепи намагничивания: 168.468 о.е.

Calculation results

Let's put the data in a table:

In [ ]:
using Pkg
"PrettyTables" in [p.name for p in values(Pkg.dependencies())] ? using PrettyTables : Pkg.add("PrettyTables")
colomn1 = ["R", "X", "L", "Rm", "Xm", "Lm"]
colomn2 = [Rvn, Xvn, Lvn, Rm, Xm, Lm]
colomn3 = [Rnn, Xnn, Lnn, Rm, Xm, Lm]
colomn4 = [R_pu, L_pu, Lm_pu, Rm_pu, Lm_pu, Lm_pu]
data = hcat(colomn1, colomn2, colomn3, colomn4);
header = (["Parameter", "Named Primary", "Named Secondary", "Relative"])
pretty_table(
    data,
    header = header,
    alignment = :l,
    formatters = ft_printf("%5.5f")
)
┌──────────┬───────────────────────┬───────────────────────┬───────────────┐
│ Параметр │ Именованные первичные │ Именованные вторичные │ Относительные │
├──────────┼───────────────────────┼───────────────────────┼───────────────┤
│ R        │ 0.32029               │ 0.00267               │ 0.00194       │
│ X        │ 8.67299               │ 0.07230               │ 0.05246       │
│ L        │ 0.02761               │ 0.00023               │ 168.46773     │
│ Rm       │ 188928.57143          │ 188928.57143          │ 1142.85714    │
│ Xm       │ 27849.82096           │ 27849.82096           │ 168.46773     │
│ Lm       │ 88.64873              │ 88.64873              │ 168.46773     │
└──────────┴───────────────────────┴───────────────────────┴───────────────┘

Transfer of parameters to the transformer unit

Transfer of calculated parameters to transformer blocks T1 and T2:

In [ ]:
model_name = "two_winding_transformer"
model_name in [m.name for m in engee.get_all_models()] ? engee.open(model_name) : engee.load( "$(@__DIR__)/$(model_name).engee");
for i in 1:2
    engee.set_param!(model_name * "/T" * string(i),
                "R_1_pu" => R_pu,
                "R_2_pu" => R_pu,
                "X_1_pu" => L_pu,
                "X_2_pu" => L_pu,
                "R_m_pu" => Rm_pu,
                "X_m_pu" => Lm_pu,
                "include_leakage_reactance" => true,
                "include_magnetizing_resistance" => true,
                "include_magnetizing_reactance"  => true
                );
end

Verification of parameter calculation

In [ ]:
results = engee.run(model_name);
Pxx = results["Rhx"].value[end];
Qxx = results["Qxx"].value[end];
Rab = results["Rab"].value[end];
Xab = results["Xab"].value[end];
@printf "Relative error of Rh losses: %.3f%%\n" abs(Pxx - Ph) / Ph * 100
@printf "Relative error of loss Qx: %.3f%%\n" abs(Qxx - Qh) / Qh * 100
@printf "Relative error of the active resistance of the windings: %.3f%%" abs(Rab - 2 * Rvn) / (2 * Rvn) * 100
@printf "Relative error of the inductive resistance of the windings: %.3f%%" abs(Xab - 2 * Xvn) / (2 * Xvn) * 100
Относительная погрешность потерь Pх: 0.055%
Относительная погрешность потерь Qх: 0.031%
Относительная погрешность активного сопротивления обмоток: 0.031%
Относительная погрешность индуктивного сопротивления обмоток: 0.016%

Links

  1. Handbook on the design of electrical networks /
    edited by D. L. Faybisovich. – 4th ed., revised and add. – M. : ENAS, 2012. – 376 p. : ill.